360. Molecular Polarisability. The Molar Kerr Constant of Ferrocene.

By M. Aroney, R. J. W. Le Fèvre, and K. M. Somasundaram.

From the viewpoint of polarisability ferrocene is equivalent to a krypton atom sandwiched between two planar regular-pentagonal $(\mathrm{CH})_{5}$ rings in each of which the carbon-carbon bond ellipsoids have the same semi-axes as those of the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}$ bonds in benzene. On this basis the predicted molar Kerr constant is 20.1×10^{-12}, against a measured value of 19.9×10^{-12}.

The molar Kerr constants and total dielectric polarisations of ferrocene dissolved in carbon tetrachloride have been measured by standard methods ${ }^{1}$ at 25°. The observations listed below show the two properties mentioned to have values at infinite dilution of $19 \cdot 8_{7} \times$ 10^{-12} and $52 \cdot 4_{6}$ c.c. respectively. Since the molecular refraction (Na-d line) of ferrocene is 50.4 c.c. (so that ${ }_{\infty} P_{2}$ is slightly less than $1.05 R_{\mathrm{D}}$) the non-polarity of this molecule is confirmed. ${ }^{2}$

The molar Kerr constant is therefore controlled ${ }^{3}$ by the terms θ_{1} and $\theta_{3} ; \theta_{3}$ cannot be estimated a priori and, being probably small, will be neglected. From $\infty\left({ }_{m} K_{2}\right)=$ 19.87×10^{-12} we have, ${ }^{4}$ therefore, $\theta_{1}=4.72_{5} \times 10^{-35}$, whence (with ${ }_{\mathrm{D}} P /{ }_{\mathrm{E}} P=1 \cdot 1$), $b_{1}-b_{3}= \pm 0.631 \times 10^{-23}$. It is assumed from the X-ray analyses of ferrocene ${ }^{5}$ that

[^0]the appropriate polarisability ellipsoid will be one of rotation, with semi-axes $b_{1}=b_{2}$, and b_{3}. Taking the electronic polarisation as $0.95 R_{\mathrm{D}}$ gives $2 b_{1}+b_{3}=5.691 \times 10^{-23}$. By experiment two alternative solutions thus become available:

		$10^{46}\left(b_{1}-b_{3}\right)^{2}$	$10^{23} b_{1}$
Solution A $\ldots \ldots \ldots \ldots \ldots \ldots$.	$0 \cdot 398$	$2 \cdot 107$	$10^{23} b_{3}$
Solution B $\ldots \ldots \ldots \ldots \ldots \ldots$	0.398	1.687	2.476

According to A , ferrocene is more polarisable in planes parallel to the pentagonal rings than in directions perpendicular to them; according to B, the reverse is true.

No direct evidence exists to guide a choice between A and B. Previously ${ }^{6}$ it has been noted that the dimensions of the " cavity " created by a solute in its solvent often provide data with which to divide ($b_{1}+b_{2}+b_{3}$) into the separate components. Using the distances $\mathrm{C}-\mathrm{C}=1.40 \AA, \mathrm{C}-\mathrm{Fe}=2.044 \AA$ (as cited in Pauson's review ${ }^{5}$), and $\mathrm{C}-\mathrm{H}=1.04$ \AA, and adopting 108° as the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle, together with " Wirkungsradien " from Stuart ${ }^{7}$ (i.e., following the procedures of past studies ${ }^{8}$ of the dielectric polarisation-medium effect), gives a model containable within a cylinder of height $6 \cdot 2 \AA$ and diameter $6 \cdot 3 \AA$. Solution A is thus favoured, although the anisotropy forecast is much less than that observed.

A more satisfactory approach is to note that the $\mathrm{C}-\mathrm{C}$ distance is equal to that which occurs in benzene, so that-since bond lengths and bond polarisabilities are connected ${ }^{9}$ -$\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}$ ellipsoids may be applied to the C_{5} rings of ferrocene. As the $\mathrm{C}-\mathrm{H}$ link is isotropically polarisable, ${ }^{10}$ an ellipsoid for the ($\left.\mathrm{CH}-\mathrm{CH}\right)_{\text {aromatic }}$ unit may be used. Benzene ${ }^{11}$ has ${ }_{\infty}\left({ }_{m} K_{2}\right)=7 \cdot 2_{4} \times 10^{-12}$ at 20°; this with ${ }_{\mathrm{E}} P=25 \cdot 0_{3}$ c.c. gives $b_{1} \mathrm{C}_{\mathrm{E}} \mathrm{H}_{6}=b_{2} \mathrm{C}_{6} \mathrm{H}_{6}=1 \cdot 12_{0} \times$ 10^{-23}, and $b_{3}{ }^{\mathrm{C}_{6} \mathrm{H}_{6}}=0.73_{6} \times 10^{-23} ; b_{\mathrm{V}}{ }^{\text {(CH.CH)Ar }}$ therefore is 0.123×10^{-23}. By Le Fèvre's equation, ${ }^{9} 10^{23} b_{\mathrm{L}}{ }^{(\mathrm{CH} \cdot \mathrm{OH}) \mathrm{Ar}}$ is $0 \cdot 288 ; b_{\mathrm{L}}+b_{\mathrm{T}}+b_{\mathrm{V}}$ for $(\mathrm{CH} \cdot \mathrm{CH})_{\mathrm{Ar}}$ is $1 / 6$ of $2 b_{1}+b_{3}$ for benzene; by difference b_{T} (OH.CR)Ar is therefore 0.085×10^{-23}. Utilising these semi-axes for a regular pentagonal $(\mathrm{CH})_{5}$ ring gives $0.932,0.932$, and 0.615×10^{-23} respectively for $b_{1}{ }^{(\mathrm{CH})_{s},} b_{2}{ }^{(\mathrm{CHH})_{s}}$, and $b_{3}{ }^{(\mathrm{CHH})_{5}}$. As there are two parallel $(\mathrm{CH})_{5}$ rings in ferrocene, the θ_{1} for this molecule should contain a contribution from these rings of $\left(b_{1}-b_{3}\right)^{2}=0.402 \times 10^{-46}$; this is very close to the quantity (0.398×10^{-46}) observed; the calculated ${ }_{m} K$ from this factor alone is 20.1×10^{-12}; the ${ }_{\mathrm{m}} K$ from experiment is 19.9×10^{-12}.

The implication is that the iron atom is nearly isotropic in its polarisability. Algebraically positive semi-axes for the iron atom can be estimated only from solution A (which is therefore preferable to B) ; they are:

Across the $(\mathrm{CH})_{5}$ planes: $2.107-2 \times 0.932=0.243 \times 10^{-23}$
At 90° to the $(\mathrm{CH})_{5}$ planes: $1.476-2 \times 0.615=0.246 \times 10^{-23}$
Such values for iron are of interest in regard to suggestions ${ }^{5}$ that the iron atom in ferrocene has the electronic configuration of krypton, for which gas Watson and Ramaswamy ${ }^{12}$ (from refractivity-dispersion measurements) recorded an electronic polarisation of $6 \cdot 26$ c.c; from this, treating krypton as an isotropically polarisable atom, we obtain $b_{1} \mathrm{Kr}=$ $b_{2}{ }^{\mathrm{Kr}}=b_{3}{ }^{\mathrm{Kr}}=0.248 \times 10^{-23}$. To emphasise the significance of these conclusions: had we assumed a priori that ferrocene is equivalent to a krypton atom sandwiched between two parallel $(\mathrm{CH})_{5}$ planes, the b_{1} and b_{3} expected would have been $2 \cdot 112 \times 10^{-23}$ and 1.478×10^{-23}, and the ${ }_{\mathrm{m}} K_{\text {cale. }}$ only $c a .0 .2 \times 10^{-12}$ higher than that in fact found.

[^1]
Experimental

Ferrocene, m. p. $173-174^{\circ}$, was prepared as described by Wilkinson ${ }^{13}$ except that the crude product was distilled in steam and recrystallised from aqueous methanol.

Measurements of the following properties of solutions containing weight fractions w_{2} of solute in carbon tetrachloride have been made at $25^{\circ}: \Delta B$, differences between Kerr constants of solution and solvent, Δn, differences between refractive indexes (Na light) of solution and solvent, ε_{12} and d_{12}, the dielectric constants and densities respectively. For $w_{2}=0, B=$ $0.070 \times 10^{-7}, n_{\mathrm{D}}=1.4575, \varepsilon=2.2270$, and $d=1.58454$. Details concerning procedures, calculations, etc., are given in ref. 1.

Observations on ferrocene-carbon tetrachloride solutions at 25°.

$10^{5} w_{2}$	1046	1292	1426	1434	1671	1909	1924
$10^{7} \Delta B$	0.0115	0.014_{5}	$0 \cdot 0158$	0.016 ${ }_{1}$	$0 \cdot 019{ }_{4}$	0.022 ${ }_{5}$	$0 \cdot 023_{3}$
$10^{4} \Delta n$	22	27	29	30	35	40	41
ε_{12}	$2 \cdot 2335$	2.2349	$2 \cdot 2360$	$2 \cdot 2363$	$2 \cdot 2374$	2.2388	$2 \cdot 2392$
d_{12}	1.58124	1.58104	1.58086	1.58030	1.57979	$1 \cdot 57956$	1.57902

This work has been carried out during the tenure by K. M. S. of an H. B. and F. M. Gritton Post-graduate Research Fellowship.

University of Sydney, N.S.W., Australia.
[Received, June 29th, 1959.]
${ }^{13}$ Wilkinson, Org. Synth., 1956, 36, 31.

[^0]: ${ }^{1}$ (a) Le Fèvre and Le Fèvre, $J ., 1953,4041$; 1954, 1577; (b) Rev. Pure Appl. Chem., 1955, 5, 261 ; (a) Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 2.
 ${ }_{2}$ Wilkinson, Rosenblum, Whiting, and Woodward, J. Amer. Chem. Soc., 1952, 74, 2125.
 ${ }^{3}$ Ref. $1(b)$, pp. 286, 309.
 ${ }^{4}$ Ref. l(b), p. 270.
 ${ }^{5}$ Pauson, Quart. Rev., 1955, 9, 391.

[^1]: ${ }^{6}$ Ref. 2, p. 287; Le Fèvre and Le Fèvre, $J ., 1955,2750 ;$ Le Fèvre, Le Fèvre, Rao, and Smith, J., 1959, 1188.
 ${ }^{7}$ Stuart, Z. phys. Chem., 1935, B, 2\%, 350.
 ${ }^{8}$ Ref. 1 (c), Chap. 3.
 ${ }^{9}$ Le Fèvre, Proc. Chem. Soc., 1958, 283.
 ${ }^{10}$ Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 1121; cf. ref. 1(b), p. 299.
 ${ }^{11}$ Ref. $1(a), 1954$; cf. ref. $1(b)$, p. 284.
 ${ }^{12}$ Watson and Ramaswamy, Proc. Roy. Soc., 1936, A, 156, 144.

