360. Molecular Polarisability. The Molar Kerr Constant of Ferrocene.

By M. ARONEY, R. J. W. LE FÈVRE, and K. M. SOMASUNDARAM.

From the viewpoint of polarisability ferrocene is equivalent to a krypton atom sandwiched between two planar regular-pentagonal (CH)5 rings in each of which the carbon-carbon bond ellipsoids have the same semi-axes as those of the $C_{\rm Ar}\text{-}C_{\rm Ar}$ bonds in benzene. On this basis the predicted molar Kerr constant is $20.1 imes 10^{-12}$, against a measured value of $19.9 imes 10^{-12}$.

THE molar Kerr constants and total dielectric polarisations of ferrocene dissolved in carbon tetrachloride have been measured by standard methods ¹ at 25°. The observations listed below show the two properties mentioned to have values at infinite dilution of $19.8_7 \times$ 10^{-12} and $52 \cdot 4_6$ c.c. respectively. Since the molecular refraction (Na-D line) of ferrocene is 50.4 c.c. (so that ${}_{\infty}P_2$ is slightly less than $1.05R_p$) the non-polarity of this molecule is confirmed.²

The molar Kerr constant is therefore controlled ³ by the terms θ_1 and θ_3 ; θ_3 cannot be estimated a priori and, being probably small, will be neglected. From $_{\infty}(_{m}K_{2}) =$ 19.87×10^{-12} we have,⁴ therefore, $\theta_1 = 4.72_5 \times 10^{-35}$, whence (with $_{\rm D}P/_{\rm E}P = 1.1$), $b_1 - b_3 = \pm 0.631 \times 10^{-23}$. It is assumed from the X-ray analyses of ferrocene ⁵ that

⁵ Pauson, Quart. Rev., 1955, 9, 391.

¹ (a) Le Fèvre and Le Fèvre, J., 1953, 4041; 1954, 1577; (b) Rev. Pure Appl. Chem., 1955, 5, 261; (a) Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 2.

² Wilkinson, Rosenblum, Whiting, and Woodward, J. Amer. Chem. Soc., 1952, 74, 2125.

³ Ref. 1(b), pp. 286, 309. ⁴ Ref. 1(b), p. 270.

the appropriate polarisability ellipsoid will be one of rotation, with semi-axes $b_1 = b_2$, and b_3 . Taking the electronic polarisation as $0.95R_D$ gives $2b_1 + b_3 = 5.691 \times 10^{-23}$. By experiment two alternative solutions thus become available:

	$10^{46}(b_1 - b_3)^2$	$10^{23}b_1$	$10^{23}b_{3}$
Solution A	0.398	$2 \cdot 107$	1.476
Solution B	0.398	1.687	2.318

According to A, ferrocene is more polarisable in planes parallel to the pentagonal rings than in directions perpendicular to them; according to B, the reverse is true.

No direct evidence exists to guide a choice between A and B. Previously ⁶ it has been noted that the dimensions of the " cavity " created by a solute in its solvent often provide data with which to divide $(b_1 + b_2 + b_3)$ into the separate components. Using the distances C-C = 1.40 Å, C-Fe = 2.044 Å (as cited in Pauson's review ⁵), and C-H = 1.04Å, and adopting 108° as the C–C–C angle, together with '' Wirkungsradien '' from Stuart 7 (*i.e.*, following the procedures of past studies 8 of the dielectric polarisation-medium effect), gives a model containable within a cylinder of height 6.2 Å and diameter 6.3 Å. Solution A is thus favoured, although the anisotropy forecast is much less than that observed.

A more satisfactory approach is to note that the C-C distance is equal to that which occurs in benzene, so that—since bond lengths and bond polarisabilities are connected 9- $C_{Ar}-C_{Ar}$ ellipsoids may be applied to the C_5 rings of ferrocene. As the C-H link is isotropically polarisable,¹⁰ an ellipsoid for the (CH-CH)_{aromatic} unit may be used. Benzene¹¹ has $_{\infty}(_{\rm m}K_2) = 7.2_4 \times 10^{-12}$ at 20°; this with $_{\rm E}P = 25.0_3$ c.c. gives $b_1^{\ C_6H_6} = b_2^{\ C_6H_6} = 1.12_0 \times 10^{-23}$, and $b_3^{\ C_6H_6} = 0.73_6 \times 10^{-23}$; $b_{\rm V}^{\rm (CH-CH)Ar}$ therefore is 0.123×10^{-23} . By Le Fèvre's equation, $^9 \ 10^{23}b_{\rm L}^{\rm (CH-CH)Ar}$ is 0.288; $b_{\rm L} + b_{\rm T} + b_{\rm V}$ for (CH-CH)_{Ar} is 1/6 of $2b_1 + b_3$ for benzene; by difference $b_{\rm T}^{\rm (OH-OH)Ar}$ is therefore 0.085×10^{-23} . Utilising these semi-axes for a regular pentagonal (CH)₅ ring gives 0.932, 0.932, and 0.615×10^{-23} respectively for $b_1^{(CH)_5}$, $b_2^{(CH)_5}$, and $b_3^{(CH)_5}$. As there are two parallel (CH)₅ rings in ferrocene, the θ_1 for this molecule should contain a contribution from these rings of $(b_1 - b_3)^2 = 0.402 \times 10^{-46}$; this is very close to the quantity (0.398×10^{-46}) observed; the calculated $_{\rm m}K$ from this factor alone is 20.1×10^{-12} ; the _mK from experiment is 19.9×10^{-12} .

The implication is that the iron atom is nearly isotropic in its polarisability. Algebraically positive semi-axes for the iron atom can be estimated only from solution A (which is therefore preferable to B); they are:

Across the (CH)₅ planes:
$$2 \cdot 107 - 2 \times 0.932 = 0.243 \times 10^{-23}$$

At 90° to the (CH)₅ planes: $1.476 - 2 \times 0.615 = 0.246 \times 10^{-23}$

Such values for iron are of interest in regard to suggestions ⁵ that the iron atom in ferrocene has the electronic configuration of krypton, for which gas Watson and Ramaswamy¹² (from refractivity-dispersion measurements) recorded an electronic polarisation of 6.26c.c; from this, treating krypton as an isotropically polarisable atom, we obtain $b_1^{Kr} =$ $b_2^{Kr} = b_3^{Kr} = 0.248 \times 10^{-23}$. To emphasise the significance of these conclusions: had we assumed a priori that ferrocene is equivalent to a krypton atom sandwiched between two parallel (CH)₅ planes, the b_1 and b_3 expected would have been $2\cdot 112 \times 10^{-23}$ and 1.478×10^{-23} , and the ${}_{\rm m}K_{\rm calc.}$ only ca. 0.2×10^{-12} higher than that in fact found.

- ⁹ Le Fèvre, Proc. Chem. Soc., 1958, 283.
- ¹⁰ Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 1121; cf. ref. 1(b), p. 299.
- ¹¹ Ref. 1(a), 1954; cf. ref. 1(b), p. 284.
- ¹² Watson and Ramaswamy, Proc. Roy. Soc., 1936, A, 156, 144.

⁶ Ref. 2, p. 287; Le Fèvre and Le Fèvre, J., 1955, 2750; Le Fèvre, Le Fèvre, Rao, and Smith, J., 1959, 1188.

⁷ Stuart, Z. phys. Chem., 1935, B, 27, 350.
⁸ Ref. 1(c), Chap. 3.

EXPERIMENTAL

Ferrocene, m. p. 173—174°, was prepared as described by Wilkinson 13 except that the crude product was distilled in steam and recrystallised from aqueous methanol.

Measurements of the following properties of solutions containing weight fractions w_2 of solute in carbon tetrachloride have been made at 25°: ΔB , differences between Kerr constants of solution and solvent, Δn , differences between refractive indexes (Na light) of solution and solvent, ε_{12} and d_{12} , the dielectric constants and densities respectively. For $w_2 = 0$, $B = 0.070 \times 10^{-7}$, $n_{\rm D} = 1.4575$, $\varepsilon = 2.2270$, and d = 1.58454. Details concerning procedures, calculations, etc., are given in ref. 1.

Observations on ferrocene-carbon tetrachloride solutions at 25°.

$10^5 w_2$	1046	1292	1426	1434	1671	1909	1924	
$10^{7}\Delta B$	0.0112	0·014 ₅	0.015_{8}	0.0161	0·019₄	0.022_{5}	0.023_{3}	
$10^{4}\Delta n$	2 2	27	29	30	35 -	40	41	
ε ₁₂	$2 \cdot 2335$	$2 \cdot 2349$	$2 \cdot 2360$	$2 \cdot 2363$	$2 \cdot 2374$	$2 \cdot 2388$	$2 \cdot 2392$	
$\hat{d_{12}}$	1.58124	1.58104	1.58086	1.58030	1.57979	1.57956	1.57902	
whence $10^7 \Delta B = 0.947 w_2 + 12.7 w_2^2$; $\sum \Delta n / \sum w_2 = 0.209$; $\sum \Delta \varepsilon / \sum w_2 = 0.627$; $\sum \Delta d / \sum w_2 = -0.280$;								
so that $\infty(_{\rm m}K_2) = 1$	$9.8_7 \times 10^{-1}$	¹² and $_{\infty}P_2$	$= 52.4_{6}$ c.c	(= 1.041)	$R_{\mathbf{D}}$ c.c. con	sistently wi	$th \mu = 0$.	

This work has been carried out during the tenure by K. M. S. of an H. B. and F. M. Gritton Post-graduate Research Fellowship.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, June 29th, 1959.]

¹³ Wilkinson, Org. Synth., 1956, 36, 31.